
Discrete Time Control Systems

Lino Guzzella

Spring 2013

0-0

1 Lecture — Introduction

Inherently Discrete-Time Systems, example bank account

Bank account, interest rates r+ > 0 for positive, r− > 0 for negative

balances

x(k + 1) =





(1 + r+)x(k) + u(k), x(k) > 0

(1 + r−)x(k) + u(k), x(k) < 0

(1)

where x(k) ∈ ℜ is the account’s balance at time k and u(k) ∈ ℜ is the

amount of money that is deposited to (u(k) > 0) or withdrawn from

(u(k) < 0) the account.

1

In general such systems are described by a difference equation of the

form

x(k + 1) = f(x(k), u(k)), x(k) ∈ ℜn, u(k) ∈ ℜm, f : ℜn×m → ℜn

(2)

with which an output equation of the form

y(k) = g(x(k), u(k)), y(k) ∈ ℜp, g : ℜn×m → ℜp (3)

is often associated.

You will learn how continuous-time systems can be transformed to a

form similar to that form.

Note that there is a fundamental difference between inherently

discrete time systems and such approximations: for the former there

is no meaningful interpretation of the system behavior in between the

discrete time instances k = {1, 2, . . .}, while the latter have a clearly

defined behavior also between two “sampling” events.

2

Discrete-Time Control Systems

Most important case: continuous-time systems controlled by a digital

computer with interfaces (“Discrete-Time Control” and “Digital

Control” synonyms).

Such a discrete-time control system consists of four major parts:

1 The Plant which is a continuous-time dynamic system.

2 The Analog-to-Digital Converter (ADC).

3 The Controller (µP), a microprocessor with a “real-time” OS.

4 The Digital-to-Analog Converter (DAC) .

3

+

−
r(t) e(t)

ADC µP DAC
u(t)

Plant
y(t)? ?

4

The signals y, e, and u are continuous-time variables. The variables

entering and exiting the microprocessor (block µP) are sampled, i.e.,

the ADC is an idealized sampler

e(k) = e(k · T), (4)

The constant parameter T is the sampling time.

The output of the block µP is again only defined at certain instances.

Hold elements transform this variable into a continuous-time signal.

Zero-Order Holds (ZOH)

u(t) = u(k · T) ∀t ∈ [k · T, (k + 1) · T) (5)

Higher-order holds available but seldom used.

5

Major challenge: loop contains both continuous-time and

discrete-time parts. Two analysis approaches possible:

• The analysis is carried out in the continuous-time domain, and

the discrete-time part has to be described by a continuous-time

system with the input at point 3 and the output at point 2.

• The analysis is carried out in the discrete-time domain, and the

continuous-time part has to be described by a discrete-time

system with the input at point 1 and the output at point 4.

The two approaches are not equivalent. Obviously, the first one is

more powerful since it will provide insights into the closed-loop

system behavior for all times t. The second one will only yield

information at the discrete time instances k · T . Accordingly, it is to
be expected that the second approach is easier to follow and this

conjecture will be confirmed below.

6

replacemen

1 2

u(t)

P (s)

y(t)
−

+ r(t)

e(t)

34

e(k)

C(z)

u(k)
ZOH

7

The output signal of the plant y(t) is a function of the plant’s input

u(t), a relation which may be described, for instance, by ordinary

differential equations (in the finite dimensional case) or by transfer

functions P (s) (in the linear case).

Output u(k) of the discrete controller C(z) depends on its input e(k)

in a recursive way

u(k) = f(e(k), e(k−1), . . . , e(k−n), u(k−1), u(k−2), . . . , u(k−n)) (6)

For a linear controller, a frequency domain representation will be

derived (C(z)).

8

The microprocessor performs these calculations once every sampling

interval. Important aspects of this part are the synchronization and

the computation delays (see folllowing Figure). Typically, the

programming is done in a “high-level” computer language (“C” is

often used). Hardware drivers provided by the manufacturers of the

ADC and DAC.

For rapid prototyping control hardware/software systems are used.

They are very convenient to test control algorithms because they

dovetail with Matlab/Simulink. For series applications such systems

are too expensive.

9

initialize system

repeat wait for interrupt

data input

compute controller output

update shift registers

data output

terminate task

until done

shut down system

A) interrupt

time

time

time

k + 1

k + 1

k + 1

A

A

A
A

A
A

A
A A

D

D

D
D

D
D

D
D D

C

C

C C

CC

CC C

k

k

k

δ

δ

δ = T

B)

C)

10

In all cases additional delays arise. They may be added to the plant

during the controller design process, i.e., if P (s) is the true plant, the

design process is carried out for the fictitious plant e−δ·s · P (s).

Unfortunately, the delay δ will not be constant in cases A) and B)

(no real-time operating system can guarantee that). In order to cope

with that the controller will have to have a sufficient robustness

margin (in this case phase margin). Approach C) shows how to avoid

varying computation delays by artificially delaying the output until

the next interrupt stimulus arrives. This event will be strictly

synchronous such that in this case constant delays result. The

fictitious plant in this case will be e−T ·s · P (s).

11

P (s)

continuous-time

synthesis

C(s)

emulation

T “small”

“B”

C̃(z)

C(z)
discrete-time

synthesis

P (z)

“A”

T “large”

ZOH

12

Organization of this Text

Chapter 2: “emulation techniques” (following the path “B”), works

well when the sampling times are much smaller than the relevant

time constants of the system. No guarantee that stability or

robustness properties are invariant to the transformation B.

Chapter 3: main properties of the sample-and-hold procedure, i.e.,

use continuous-time methods to describe the main effects of the

sampling and holding mechanisms.

13

Chapter 4: mathematical description of discrete time signals and

systems. The “Z transformation (the analog of the Laplace

transformation), transformation of continuous-time systems to

discrete-time systems and stability analysis.

Chapter 5: synthesis of control systems directly in the discrete-time

domain (path “A”), “classical” (loop shaping, root-locus, etc.) and

“modern” methods (LQR, LQG, etc.), “dead-beat,” etc.

14

2 Lecture — Emulation Methods

Introduction

In this chapter the emulation approach will be presented. First the

key idea is introduced using analogies from the numerical integration

of differential equations. As a “by-product” a shift operator z will be

introduced using informal arguments. Some first system stability

results can be obtained with that. The most useful emulation

methods are then introduced and some extensions are shown which

improve the closed-loop system behavior. The chapter closes with a

discussion of the assumptions under which this approach is

recommended and what limitations have to be respected.

15

Basic Ideas

Starting point: PI controller, in the time domain defined by

u(t) = kp ·
[
e(t) +

1

Ti

∫ t

0

e(τ) · dτ
]

(7)

and in the frequency domain by

U(s) = kp ·
[
1 +

1

Ti · s

]
E(s) (8)

16

If such a controller is to be realized using a digital computer, the

proportional part does not pose any problems. The integrator

requires more attention. The simplest approach is to approximate it

by Euler’s forward rule (initial condition q(0) = 0 is assumed)

q(k · T) =
∫ k·T

0

e(τ) · dτ ≈
k−1∑

i=0

e(i · T) · T (9)

For sufficiently small T this approximation yields a controller which

produces a closed-loop behavior similar to the one observed in

continuous time.

17

In a delay-free (the delay can be included in the plant dynamics) and

recursive formulation the controller (7) can therefore be

approximated in discrete time by

u(k · T) = kp ·
[
e(k · T) + 1

Ti
· q(k · T)

]
,

q(k · T + T) = q(k · T) + e(k · T) · T
(10)

In order to simplify the reasoning below two definitions are useful:

• The notation x(k) is adopted to denote the value of the variable

x at time k · T .
• The operator z is used to denote a forward shift by one sampling

interval, i.e., z · x(k) is equal to x(k + 1).

The shift operator z is analogous to the Heavyside operator s

(“differentiation”). The analogy can be carried further, i.e., the

backward shift operation is denoted by z−1 with z−1 ·x(k) = x(k− 1).

18

The operator z can be used to “solve” linear difference equations

y(k+n)+an−1 ·y(k+n−1)+. . .+a0 ·y(k) = bn ·u(k+n)+. . .+b0 ·u(k)
(11)

which are transformed to

y(k)+z−1 ·an−1 ·y(k)+. . .+z−n ·a0 ·y(k) = bn ·u(k)+. . .+z−n ·b0 ·u(k)
(12)

and therefore

y(k) =
bn + z−1 · bn−1 + . . .+ z−n · b0
1 + z−1 · an−1 + . . .+ z−n · a0

· u(k) (13)

Apply this to the problem of approximating the PI controller

u(k) = kp ·
[
1 +

T

Ti · (z − 1)

]
· e(k) (14)

Therefore

s ≈ z − 1

T
(15)

19

The key idea of all emulation approaches is now to use the

substitution (15) (or a similar one) to transform a given

continuous-time controller transfer function C(s) into a discrete-time

transfer function C(z), i.e.,

C(z) ≈ C(s)|s= z−1

T
(16)

and to use the shift properties of the variable z to derive a difference

recursion for the controller output u(k).

It is important to note that with the correspondence (15) a rational

function C(s) is transformed into a rational function C(z). The

reasons for that will become clear in a moment.

20

Example: Emulation of a Lead Controller

Assume that double integrator plant P (s) = s−2 is controlled by

C(s) = 0.2 · 3 · s+ 1

s+ 1
(17)

which is to be realized on a digital controller, T = 1 s. Using Euler’s

forward emulation the result

C(z) ≈ 0.2 · 3 · (z − 1) + 1

(z − 1) + 1
= 0.2 · 3 · z − 2

z
(18)

is obtained. Recalling the definition of C(s) yields

u(k) = C(z) · e(k), → u(k) · z = e(k) · (0.6 · z − 0.4) (19)

Using the shift properties

u(k + 1) = 0.6 · e(k + 1)− 0.4 · e(k) (20)

u(k) = 0.6 · e(k)− 0.4 · e(k − 1) (21)

is obtained (for T 6= 1 two shift registers are required).

21

Euler Backward and Tustin Transformations

Forward (explicit) Euler approach is numerically not efficient (very

small integration intervals T required).

Complex algorithms designed for efficient numerical integration not

applicable to real-time control systems.

Two intermediate approaches often used for controller emulation:

The first one is Euler backward (implicit) approach, which yields

integration as

q(k + 1) = q(k) + e(k + 1) · T (22)

The second one is the bilinear approach (Heun’s rule, trapezoidal or

Tustin approximation)

q(k + 1) = q(k) +
1

2
(e(k) + e(k + 1)) · T (23)

22

Repeating the steps shown in the last section and using the discrete

shift operator, the following two approximation rules are obtained

Euler backward : s ≈ z−1
z·T ; Tustin : s ≈ 2

T · z−1
z+1

(24)

Especially the Tustin transformation is often used in practice.

However, even this approach has its limitations and the emulated

discrete-time closed-loop system performance is only comparable to

the continuous-time performance if the sampling intervals are

sufficiently small. More precisely, as long as the cross-over frequency

ωc and the sampling time T satisfy the inequality

T <
π

5 · ωc
, (25)

the emulated controller is likely to produce a satisfactory closed-loop

system behavior.

23

The inverse mappings of the Euler forward, Euler backward, and

Tustin are

m1 : z = T · s+ 1, m2 : z =
1

1− T · s , m3 : z =
1 + s · T/2
1− s · T/2 (26)

For continuous-time systems the asymptotically stable poles are

known to be in the open complex left-hand plane. Figure 1 shows

how this set is mapped under the transformations mi.

24

ImIm Im

RRe Re

11 1

m1(CI−)

m2(CI−)

m3(CI−)

Figure 1: Value set of the mappings mi

25

For a first-order system

x(k + 1) = f · x(k) + g · u(k), y(k) = c · x(k) (27)

impulse response yi(k) (x(0) = 0, u(0) = 1 and u(k) = 0 for all k 6= 0)

is

y(0) = 0, y(k) = c · fk−1 · g for k > 0 (28)

Therefore, the system is asymptotically stable iff |f | < 1. Using the

shift operator formalism

y(k) =
c · g
z − f

· u(k) (29)

which shows that the system’s pole is given by z = f .

Therefore asymptotically stable continuous-time first-order systems

are always transformed into asymptotically stable discrete-time

systems by m2 and m3, but the simpler mapping m1 can produce

unstable systems! Generalizations of these ideas to higher-order

systems will be discussed later.

26

Frequency Domain Analysis of Emulation Methods

The key property of z−1 is to shift a time sequence one step backward

z−1 · x(k) = x(k − 1) (30)

If x(k) has been obtained by sampling a continuous-time signal x(t),

the operator z−1 can be defined as follows

z−1 · x(k) =
[
e−s·T · x(t)

]
t=k·T

= e−s·T · [x(t)]t=k·T (31)

The shift operator and its inverse can therefore be identified by

z = es·T and therefore s =
1

T
ln(z) (32)

The series expansion of the second equation is

1

T
ln(z) =

2

T

{
z − 1

z + 1
+

1

3
· (z − 1)3

(z + 1)3
+ . . .

}
, |z| < 1 (33)

which shows that the Tustin transformation is the first-order rational

approximation of (32).

27

Of course one might be tempted to use the transformation (32) to

emulate a given controller C(s) in a discrete-time environment.

Unfortunately, the system

C(z) = C(s)|s= 1

T
·ln(z) (34)

is no longer rational in z and therefore there is no obvious way to

transform the expression (34) into a discrete-time system following

the procedure shown in the example on slide 24.

28

A frequency domain interpretation of the two equations (32) and (33)

is derived now. For the sake of simplicity, the following example of

C(s) will be used

C(s) =
5 · s+ 1

s2 + s+ 1
(35)

Upper left-hand plot: imaginary axis mapped by es·T (T = 0.2 s in

this example) or Tustin. Value set is in both cases the unit circle.

However, in the exact emulation the circle is transversed (infinitely)

many times, while Tustin maps the positive imaginary axis only on

the upper semi-arc.

The Nyquist frequency defined by

ωN =
π

T
(36)

is indicated by a small rectangle; es·T maps j ωN to z = −1 while

Tustin maps it to z = −0.423 . . .+ j 0.906

29

Im

Im

Re

Re

dB

dB

10

10

10

0

0

−10

−10

1

1

1

π/T

π/T

ω

ω

z = 2+T ·s
2−T ·s

|C(2
T

z−1
z+1)|

|C(1
T ln(z))|

jω

|C(jω)|

z = esT

ω = π/T

s

z

30

Upper right-hand plot: mapping the points on the unit circle again to

a Bode magnitude plot for the same transfer function (35). The

dashed curve is the original Bode plot as shown in the lower

right-hand figure.

The thin black curve is the Bode plot obtained using the exact

emulation. Up to the Nyquist frequency this curve coincides with the

original Bode plot, after that the two curves separate. This is due to

an “aliasing” effect which is caused by the ambiguity introduced by

the mapping z = es·T .

The bold black curve is the Bode magnitude plot obtained using the

Tustin transformation. Due to the frequency distortions introduced

by the Tustin approximation this curve deviates from the original one

even for frequencies below ωN .

31

Intuitively, the results shown in the last figure seem to indicate that

the sampling times T must be chosen such that “the interesting part

of C(s)” is in a frequency range well below the Nyquist limit (36).

This confirms the rule of thumb (25) which was given earlier without

an explicit justification.

The frequency domain interpretation shown in the last figure is also

useful to understand an emulation method that is known as the

“prewarped Tustin” approach. In this method the Bode plots of the

original design C(s) and of its emulation C̃(z) are exactly matched

both in magnitude and phase at one desired frequency ω∗ by

prewarping the frequency s.

32

Prewarped Tustin Approximation of a First-Order System

Example: find emulation C̃(z) of C(s) = k
τ ·s+1 . The two filters must

coincide in their frequency response at ω∗, i.e., C(jω∗) = C̃(ejω
∗T).

Key idea: use Tustin emulation with an additional parameter σ > 1

s =
2

σ · T ·
z − 1

z + 1
(37)

Therefore
k

j · τ · ω∗ + 1
=

k

2τ

σT
· e

jω∗T − 1

ejω∗T + 1
+ 1

(38)

or

j · σ · ω
∗T

2
=

ejω
∗T − 1

ejω∗T + 1
(39)

=
ejω

∗T/2 · ejω∗T/2 − ejω
∗T/2 · e−jω∗T/2

ejω∗T/2 · ejω∗T/2 + ejω∗T/2 · e−jω∗T/2
(40)

= j · tan(ω
∗T

2
) (41)

33

The resulting equation

σ · ω
∗T

2
= tan(

ω∗T

2
) (42)

has always a nontrivial solution for σ > 1 and 0 < ω∗ < π/T .

Therefore:

• Choose the matching frequency ω∗.

• Compute the prewarping factor σ as follows

σ = tan(
ω∗T

2
) · 2

ω∗T
(43)

• Apply prewarped Tustin (37) and compute C̃(z).

34

Notice that since the equation (42) does not depend on any system

parameters (k or τ), the prewarping algorithm developed for a special

case is applicable to arbitrary systems. The interpretation is that the

frequency s of C(s) is “prewarped” to s · σ prior to the application of

the regular Tustin transformation (24).

The actual computation of the discrete-time emulation of a

non-trivial controller C(s) can be quite cumbersome. To facilitate

that step, all modern CACSD contain commands that automatically

compute the corresponding expressions. In Matlab this is the

command c2dm for which, as usual, the help command provides

much more information.

35

3 Lecture — Continuous-Time Analysis

of Sample-And-Hold Elements

Discrete-time sampled-data systems will be analyzed using

continuous-time methods. A full analysis including arbitrary

controllers C(z) and closed-loop systems is beyond the scope of this

text. Here only unity-gain controllers and open-loop systems will be

analyzed. This will permit to understand general sampled-data

systems.

One possible way to approach sampled-data systems is to use

continuous-time methods by analyzing the system shown in the figure

on the next slide with the point 3 as input and point 2 as output

signal. For the sake of simplicity C(z) = 1 will be assumed and the

system is assumed to be in an open-loop configuration.

36

replacemen

1 2

u(t)

P (s)

y(t)
−

+ r(t)

e(t)

34

e(k)

C(z)

u(k)
ZOH

37

Under the mentioned assumption, the “digital parts” behave similar

to a ideal sample-and-hold element. A sample-and-hold device can

easily be built using operational amplifiers and fast switches (for

instance FET transistors, see figure below). When the transistor is

“on”, the output voltage is defined by the differential equation

d

dt
x̃(t) =

−1
R · C [x(t) + x̃(t)] (44)

while in the “off” state, the output voltage is kept constant. This

device works well if the time constant τ = R · C is at least ten times

smaller than the “on” interval ∆ which has to be at least ten times

smaller than any relevant time constant of the signal to be sampled.

38

x(t)

R

R
C

∆

on

off

x̃(t)

−

+

39

Sample-and-hold devices are easy to build but not as easy to analyze.

A mathematical abstraction is therefore preferred here. The key idea

is the concept of “impulse sampling.” This mechanism is a

mathematical concept and not what occurs in reality.

The impulse sampling approach is an approximation of the behavior

of a real sample-and-hold element. For decreasing ∆ and τ , the

behavior of the real sample-and-hold element approaches the ideal

impulse sampling characteristics.

The variables analyzed below are the spectra of the input signal x(t)

and of the output x̃(t). PM: the spectrum of a signal indicates what

frequencies are present in it when a Fourier decomposition is used.

The spectrum quantifies the magnitude. If the signal is periodic, its

spectrum is discrete; otherwise it is continuous.

40

x(t)

x(t)

x̃(t)

T

T

T

2T

2T

2T

3T

3T

3T

4T

4T

4T

t

t

t

x(t) = 0, ∀ t < 0

x̄(t) =
∞∑
k=0

x(kT) · δ(t− kT)

x̃(t) =
∞∑
k=0

x(kT) · [h(t− kT)− h(t− (k + 1)T)]

41

Analyze spectral properties of x̃.

Start with

x̄(t) =
∞∑

k=0

x(k · T) · δ(t− k · T) = x(t) ·
∞∑

k=−∞

δ(t− k · T) (45)

Linearity! Notice summation is now from −∞ to +∞, no problem

since x(t) = 0 for all times t < 0.

Second part periodic, therefore Fourier series

∞∑

k=−∞

δ(t− k · T) =
∞∑

n=−∞

cn · ej·
2πn
T

·t (46)

The coefficients cn are found using the usual integral transformation

cn =
1

T

∫ T/2

−T/2

∞∑

k=−∞

δ(t− k · T) · e−j· 2πn
T

·t · dt (47)

42

In −T/2 ≤ t ≤ T/2 δ(t− k · T) not zero only for k = 0 therefore

cn =
1

T

∫ T/2

−T/2

δ(t) · e−j· 2πn
T

·t · dt = 1

T
(48)

Rewrite equation (45)

x̄(t) = x(t) · 1
T
·

∞∑

n=−∞

ej·
2πn
T

·t (49)

x(t) not periodic, therefore use Laplace transformation

X̄(s) =

∫ ∞

−∞

x̄(t) · e−s·t · dt (50)

Inserting equation (49) yields

X̄(s) =

∫ ∞

−∞

x(t) · 1
T
·

∞∑

n=−∞

ej·
2πn
T

·t · e−s·t · dt (51)

43

Interchange order of integration and summation and rearrange terms

X̄(s) =
1

T
·

∞∑

n=−∞

∫ ∞

−∞

x(t) ·e−(s−j· 2πn
T

)·t ·dt = 1

T
·

∞∑

n=−∞

X(s−j · 2πn
T

)

(52)

is obtained.

Result: The integral is simply the Laplace transformation of the

signal x(t) with the “shifted” Laplace variable σ = s− j · 2πnT .

Accordingly, the spectrum of x̄(t) will be obtained by taking the

spectrum of the input signal x(t) and adding this to the infinitely

many copies obtained by shifting the original spectrum by the

frequencies 2πn/T .

44

Example: First-Order System Impulse Response

The signal x(t) is assumed to be the impulse response of a first-order

low-pass element

P (s) =
1

τ · s+ 1
(53)

The Laplace transformation of x(t) is of course equal to the system’s

transfer function. For the sake of simplicity, only the original and the

first two copies of the signal are analyzed below

X̄(s) ≈ 1

T
·
[

1

τ · s+ 1
+

1

τ · (s− j · 2πT) + 1
+

1

τ · (s+ j · 2πT) + 1

]

(54)

The amplitude spectra of these signals for T = τ/3 are shown in

Figure 2 using a linear scale for the frequency. The spectrum of X̄(s)

is distorted when compared to the spectrum of X(s). This “aliasing”

is caused by the sampling process.

45

T · |X(jω)|2

0.1

0.01

0.001

1/τ π/T 2π/T

0

| 1

j(ω − 2π/T)τ + 1
|2

| 1

jωτ + 1
|2

| 1

j(ω + 2π/T)τ + 1
|2

ω

Figure 2: Spectrum of the signals x(t) and x̃(t) (approximated).

46

The output signal of the sample-and-hold device is

X̃(s) =
1− e−T ·s

s
· X̄(s) =

1− e−T ·s

s
· 1
T
·

∞∑

n=−∞

X(s− j · 2πn
T

) (55)

The ZOH(s) element is analyzed now, its DC gain is equal to T

lim
s→0

ZOH(s) = lim
s→0

T · e−s·T

1
= T (56)

The Bode diagram is shown in Figure 3.

Notice: in Simulink the complete sample-and-hold element – which is

not realized as discussed here by impulse sampling – is designated as

“ZOH,” its gain is then of course equal to one.

47

1/T · |ZOH(jω)|
20

0

0

−20

−40

6 ZOH(jω)

2/(Tω)

2π/T

2π/T

20π/T

20π/T

ω

π/T
0.2π/T

−50
−100
−150

Figure 3: Bode diagram of ZOH(s)

ZOH(s) is a low-pass with complex high-frequency behavior: it has

infinitely many zeros at ω = n · 2 · π/T , its local maxima are bounded
48

In summary, the following interpretation of the sample-and-hold

operation is obtained:

• The sampling can be interpreted as the multiplication with a

sequence of Dirac functions, each weighted by the value of the

signal x(t) at the sampling times t = k · T .
• The zero-order hold can be interpreted as an integration of the

difference between that signal and a version delayed by one

sampling interval, i.e.

ZOH(s) =
1− e−s·T

s
(57)

The spectrum of the signal x̃(t) is influenced by both effects, i.e., the

spectrum of the original input signal x(t) is aliased by the sampling

process yielding a distorted spectrum to which the effect of the

zero-order hold element is added.

49

Anti-Aliasing Filters and “Perfect” Reconstruction

For sampled signals, the aliasing effect is unavoidable, i.e., for

frequencies ω > ωN = π/T fictitious contributions always appear in

the spectrum of the sampled signal. However, if the original signal

spectrum has no contributions for ω ≥ ωN , such a distortion may be

avoided for frequencies ω < ωN .

|S(jω)| |S(jω − 2π/T)|

π/T0
0

ω

50

Of course, real signals never satisfy this condition. Therefore,

“Anti-Aliasing Filters” (AAF) are usually employed, which have to

be placed before the sampling element. The next figure shows the

Bode diagram of an ideal and of three real AAF . Real AAF cannot

cut off all frequency contributions for ω > ωN and introduce

unwanted phase lags at frequencies well below the Nyquist frequency.

For these reasons, they have to be included in the controller design

step by adding their dynamics to the plant dynamics.

51

dB

deg

0

0

−20

−40

−100

−200

π/T

ideal

Butterworth

Bessel

Chebyshev

ω

52

Only zero-order hold elements have been discussed here so far.

First-order hold element

FOH(s) =

(
1− e−T ·s

)2

T · s2 · (T · s+ 1) (58)

The next figure shows the values of the signals inside the FOH during

the time interval t ∈ [k · T, k · T + T).

x(t)

δ(t− kT)

1
s

x(nT

e−Ts

e−Ts

x(kT − T)

x(kT)

1
Ts

x(kT − T) + [x(kT)− x(kT − T)]t/T

x(kT)− x(kT − T)

−
−

x(kT) + [x(kT)− x(kT − T)](t− kT)/T

+

+

+
+

53

4 Lecture — Discrete-Time

System Analysis

In this chapter the second approach to discrete-time system analysis

is presented, i.e., an inherently discrete-time approach is shown which

starts by discretizing the continuous-time part of the system shown

below.

1 2

u(t)

P (s)

y(t)
−

+ r(t)

e(t)

34

e(k)

C(z)

u(k)
ZOH

54

First a time domain approach is shown, which relies on the solution

of a linear system to piecewise constant inputs. Then a frequency

domain analysis is outlined. The cornerstone of that part is the Z
transformation.With these tools the main analysis problems can be

tackled.

55

Plant Discretization

The starting point of this section is the prediction of the state x and

of the output y of a linear system {A,B,C,D} when its initial

condition x(0) and the input signal u are known. Matrix exponentials

lie at the core of this problem

eA·t = I +
1

1!
A · t+ 1

2!
(A · t)2 + 1

3!
(A · t)3 + · · ·+ 1

n!
(A · t)n + · · · (59)

where A ∈ IRn×n is a real square matrix. The matrix exponential

satisfies
d

dt
eA·t = A · eA·t = eA·t ·A (60)

where eq. (60) emphasizes that eAt and A commute. Since A · t and
A · τ commute ∀ t, τ ∈ IR the following equation holds true

(eA·t)−1 = e−A·t (61)

56

Recursive System Equations

Solution to the initial value problem:

x(t) = eA·t · x(0) +
∫ t

0

eA·(t−τ) ·B · u(τ) dτ (62)

and

y(t) = C · eA·t · x(0) +
∫ t

0

C · eA·(t−τ) ·B · u(τ) dτ +D · u(t) (63)

If an intermediate solution x(t1) has been computed, this point can

be used to restart the solution procedure

x(t) = eA·(t−t1) · x(t1) +
∫ t

t1

eA·(t−τ) ·B · u(τ) dτ (64)

In the discrete-time setting discussed here, the input u(t) is piecewise

constant, i.e.,

u(t) = u(k · T), ∀t ∈ [k · T, k · T + T) (65)

57

For that reason, the equation (64) can be further simplified to be

x(t) = eA·(t−k·T)·x(k·T)+
∫ t

k·T

eA·(t−τ) dτ ·B·u(k·T), ∀t ∈ [k·T, k·T+T)

(66)

Choosing t to be equal to the next sampling point k · T + T yields

x(k ·T+T) = eA·T ·x(k ·T)+
∫ k·T+T

k·T

eA·(k·T+T−τ) dτ ·B ·u(k ·T) (67)

Finally, using the substitution σ = k · T + T − τ in the integral part,

this expression is simplified to be

x(k · T + T) = eA·T · x(k · T) +
∫ T

0

eA·σ dσ ·B · u(k · T) (68)

58

This equation permits to adopt a purely discrete-time description of

the behavior of the plant

x(k + 1) = F · x(k) +G · u(k), y(k) = C · x(k) +D · u(k) (69)

with the obvious definitions

F = eA·T , G =

∫ T

0

eA·σ dσ · B (70)

For the case det(A) 6= 0, i.e., when A has no eigenvalues in the origin,

the integral part can be solved explicitly using equation (60)

G = A−1 ·
(
eA·T − I

)
·B (71)

59

System Stability

The system

x(k + 1) = F · x(k), x(0) 6= 0 (72)

will be classified here as:

• Asymptotically stable if limk→∞ ||xk|| = 0

• Stable if limk→∞ ||xk|| <∞
• Unstable if neither of the two former conditions are satisfied.

Since the system

x(k + 1) = F · x(k) +G · u(k), y(k) = C · x(k) +D · u(k) (73)

is linear and time-invariant, the two concepts of BIBO stability

(bounded input bounded output) and asymptotic stability, as defined

above, coincide if the system is completely observable and

controllable.

60

Spectral Methods

The stability of the system is determined by the properties of the

matrix F only. In general, F is similar to a Jordan matrix, i.e., a

coordinate transformation x = Q · z exists which transforms F into

an “almost diagonal matrix” JF

JF = Q−1 · F ·Q (74)

where some elements immediately above the main diagonal may be

equal to one.

If the eigenvalues λi satisfy the condition λi 6= λj for all i 6= j, then

the matrix JF is guaranteed to be diagonal. If multiple eigenvalues

occur, then the situation is more complex and the exact form of JF
depends on the rank loss associated to each multiple eigenvalue.

The main point is, however, that arbitrary powers of JF will remain

triangular, the elements of Jk
F being powers of the scalars λi up to λk

i .

61

Example: JF with one eigenvalue λ1 with multiplicity 4

and rank loss 2

JF =




λ1 1 0 0 0

0 λ1 1 0 0

0 0 λ1 0 0

0 0 0 λ1 0

0 0 0 0 λ2




(75)

and hence

Jk
F =




λk
1 k · λk−1

1
k·(k−1)

2 · λk−2
1 0 0

0 λk
1 k · λk−1

1 0 0

0 0 λk
1 0 0

0 0 0 λk
1 0

0 0 0 0 λk
2




(76)

62

The general solution of the homogeneous (u(k) = 0 ∀k) system (73)

is given by

x(k) = F k · x(0), k > 0 (77)

The matrix

F k = (Q · JF ·Q−1)k

= Q · JF ·Q−1 ·Q · JF ·Q−1 . . . Q · JF ·Q−1

= Q · Jk
F ·Q−1

(78)

converges to the zero matrix if and only if all its eigenvalues λi

satisfy the condition |λi| < 1 (limk→∞ km “grows slower than”

limk→∞ λk−n decreases for any finite m, n).

63

The system is unstable if one of the eigenvalues of F has a modulus

larger than one. The intermediate case, where some |λj | = 1, may be

stable or unstable, depending on the details of the Jordan structure.

If one of the multiple eigenvalues with |λi| = 1 has a rank loss smaller

than its multiplicity (i.e., the Jordan block contains some elements

1), then the system will be unstable. If the rank loss of all multiple

eigenvalues with |λi| = 1 is equal to the corresponding multiplicity

(i.e., JF is diagonal) then the system is stable.

Note that in general the system

x(k + 1) = F · x(k) +G · u(k), y(k) = C · x(k) +D · u(k) (79)

represents the linearization around an equilibrium of a nonlinear

system. In this case, the “critical” situation (some |λj | = 1) yields no

information about the stability properties of that equilibrium. The

“higher-order” terms of the original nonlinear system description will

be decisive in this case.

64

Remarks

For the explicit computation of the matrix exponential F dedicated

algorithms are known such that even large-scale problems can be

solved efficiently and reliably.

Some caution is necessary when interconnected systems have to be

analyzed. A typical situation is the series connection of two dynamic

systems

ẋ(t) = A · x(t) +B · u(t) y(t) = C · x(t)

ż(t) = K · z(t) + L · y(t) v(t) = M · z(t)
(80)

65

For this example the two operations “interconnection” and

“discretization” do not commute, i.e. the matrices R and S defined

by

R = eQ·T , Q =




A 0

L · C K


 (81)

and

S =




eA·T 0

K−1 · (eK·T − I) · L · C eK·T


 (82)

are not equal in their the lower left-hand block.

Therefore, the specific location of the various ZOH and sampling

elements has to be taken into account explicitly.

66

The plant has been characterized using an internal description, and

matrices {F,G,C,D} are unique, provided that the associated state

variables have a physical interpretation.

If only the input/output behavior of the plant is to be analyzed, this

choice of matrices is no longer unique. Any set of matrices that

satisfy the similarity conditions

F̃ = T−1 · F · T, G̃ = T−1 ·G, C̃ = C · T, D̃ = D (83)

with T ∈ IRn×n and det(T) 6= 0 will have the same output y for a

specific input u.

If the system is SISO, its input/output behavior can be described

using an n-th order difference equation

y(k+n)+an−1 ·y(k+n−1) . . .+a0 ·y(k) = bn ·u(k+n)+ . . .+b0 ·u(k)
(84)

67

It will be shown in the next section that the coefficients ai and bi are

the coefficients of the denominator and numerator polynomials of the

rational function

P (z) = c · (z · I − F)−1 · g + d (85)

This input/output description is the starting point of all system

identification methods which, by exciting an unknown system with a

signal u and recording the system’s response y, identify the

input/output behavior of the plant. Of course, equations (84) and

(85) represent only the controllable and the observable parts of the

corresponding system.

68

Z Transformation

Definition of the Z Transformation

The Z transformation acts on discrete-time signals xk with

xk ∈ IR, k = −∞, . . . ,−1, 0, 1, . . . ,∞ (86)

Below it will be always assumed that xk = 0 for all k < 0.

The Z transformation is defined by

X(z) = Z{xk} =
k=∞∑

k=0

xk · z−k (87)

where z ∈C is the new independent variable.

69

• The Z transformation is a linear operator, i.e., for the signals x

and y

Z{a · x+ b · y} = a · Z{x}+ b · Z{y}, a, b ∈ IR (88)

• The Z transformation of a signal x satisfies the shift property

Z{x.+1} = z · Z{x} − z · x0 (89)

(the signal x.+1 is obtained from x by shifting each value xk one

step forward xk → xk+1)

• The limit behavior of a signal x satisfies the equality

lim
k→∞

xk = lim
z→1

(z − 1) ·X(z) (90)

• Convolution in the time domain is equivalent to multiplication in

the frequency domain

Z{
k∑

j=0

xj · yk−j} = X(z) · Y (z) (91)

70

Z Transformation Table

X(s) ← x(t) | x(k · T)→ X(z)

1
s h(t) z

z−1

1
s2 t h(t) Tz

(z−1)2

1
s3

1
2 t

2h(t) T 2z(z+1)
2(z−1)3

1
s+a e−ath(t) z

z−e−aT

1
(s+a)2 te−ath(t) Tze−aT

(z−e−aT)2

a
s(s+a) [1− e−at]h(t) z(1−e−aT)

(z−1)(z−e−aT)

71

X(s) ← x(t) | x(k · T)→ X(z)

a
s2+a2 sin(at)h(t z sin(aT)

z2−2 cos(aT)z+1

s
s2+a2 cos(at)h(t) z(z−cos(aT))

z2−2 cos(aT)z+1

b
(s+a)2+b2 e−at sin(bt)h(t) zr sin(bT))

z2−z2r cos(bT)+r2 , r = e−a·T

s+a
(s+a)2+b2 e−at cos(bt)h(t) z2−zr cos(b·T)

z2−z2r cos(bT)+r2 , r = e−a·T

72

4.1 Transfer Functions

Using the shift property introduced above, the Z transformation can

be used to “solve” the difference equation (69)

x(k+1) = F ·x(k)+G ·u(k) ⇒ [z · I − F] ·X(z) = G ·U(z)+ z ·x0

(92)

and from that the discrete-time transfer function of the plant is

found to be

Y (z) = P (z) · U(z) =
[
C · (z · I − F)−1 ·G+D

]
· U(z) (93)

If the system has only one input and one output (SISO system), the

transfer function (93) will be a scalar rational function of z. This can

be seen if Cramer’s rule is applied, i.e.,

M−1 = Adj(M)/ det(M) (94)

where det(M) is the determinant of M and Adj(M) is its adjoint

matrix. Recall that the elements of Adj(M) are the subdeterminants

of M (the principal minors).

73

Using this rule the transfer function (93) can be written as

P (z) = c ·(z ·I−F)−1 ·g+d =
c ·Adj(z · I − F) · g + d · det(z · I − F)

det(z · I − F)
(95)

Since the determinant and the subdeterminants of M are polynomial

functions of z, the transfer function P (z) is indeed a rational function

of z. If the system has multiple inputs and outputs (MIMO), one

transfer function (95) will be obtained for each IO channel. The

discussion of MIMO systems using IO techniques is mathematically

more complicated and beyond the scope of this text. MIMO systems

will therefore be treated here using the time domain approaches only.

Another connection to a result introduced above is obtained by

transforming the rational function (95) back into the time domain

using the usual correspondence

z ·X(z)→ x(k + 1) (96)

This yields directly the IO description (84) introduced above.

74

The transfer function (95) has been derived using a state-space

“detour,” which is actually what is preferred in numerical solutions.

However, for theoretical considerations or for simple systems, for

which the solutions have been precomputed and tabulated, there

exists an alternative, direct approach. The starting point is a

continuous-time plant P (s) which is inserted in the usual sample and

zero-order hold configuration. The resulting discrete-time transfer

function can be found using an inverse Laplace transformation as

follows

P (z) = (1− z−1) · Z
{
L−1

[
1

s
· P (s)

]

t=k·T

}
(97)

75

In order to derive this expression, the transfer function of the ZOH

element

ZOH(s) =
1− e−s·T

s
(98)

and the shift property of the Z transformation

e−s·T · x(t)→ z ·X(z) (99)

have been used. Similar expressions can be found for higher-order

holds.

76

The general form of a discrete-time SISO transfer function is given by

P (z) = Y (z)/U(z) =
bn · zn + bn−1 · zn−1 . . .+ b1 · z + b0
zn + an−1 · zn−1 . . .+ a1 · z + a0

(100)

It is easy to show that bn = d, i.e., that the transfer function (100) is

strictly proper iff the plant has no feed-through term.

The inverse Z transformation yields the difference equation (84). In

practice, only the backward shift operator z−1 may be used.

Multiplying both the numerator and the denominator of (100) by

z−n yields

P (z) =
bn + bn−1 · z−1 . . .+ b1 · zn−1 + b0 · z−n

1 + an−1 · z−1 . . .+ a1 · zn−1 + a0 · z−n
(101)

Transforming that expression back into a discrete-time equation, a

realizable plant model is obtained

y(k) = −an−1·y(k−1) . . .−a0·y(k−n)+bn·u(k)+bn−1·u(n−1) . . .+b0·u(k−n)
(102)

77

As in continuous-time systems, the transfer function (100) may be

factorized into linear terms

P (z) = k · (z − ζ1) · (z − ζ2) . . . (z − ζn)

(z − π1) · (z − π2) . . . (z − πn)
(103)

where the complex numbers ζi are defined as the zeros and the πi as

the poles of the plant P (z).

In signal processing applications such a system is identified as an

Infinite Impulse Response (IIR) filter. The other popular systems are

Finite Impulse Response filters (FIR) which are not defined

recursively and, therefore, have no non-zero poles.

Notice that it is easier to identify the plant’s zeros using the

description (100) than (101).

78

Transfer Function

The general form of a discrete-time SISO transfer function is given by

P (z) = Y (z)/U(z) =
bn · zn + bn−1 · zn−1 . . .+ b1 · z + b0
zn + an−1 · zn−1 . . .+ a1 · z + a0

(104)

The transfer function is strictly proper with bn = 0 iff the

continuous-time plant has no feed-through term.

Even if the plant has a feed-through term, the computation delays

added to the plant introduce one delay and therefore the

discrete-time plant is strictly proper.

Delays q · T are often separated from the remaining part

P (z) = z−q · bn−1 · zn−1 . . .+ b1 · z + b0
zn + an−1 · zn−1 . . .+ a1 · z + a0

(105)

In general, bn−1 6= 0 even if the continuous-time plant has less than

n− 1 finite zeros.

79

Discrete-Time Frequency Response

Same idea as in continuous time

u(k) = cos(k ω T) (106)

will produce an output signal

y(k) = ytr(k) + yst(k) (107)

yst(k) = m(ω) · cos(k ω T + ϕ(ω))

= m(ω) · cos(ϕ(ω)) · cos(k ω T)−m(ω) · sin(ϕ(ω)) · sin(k ω T)

= A(ω) · cos(k ω T)−B(ω) · sin(k ω T)

(108)

80

Z-transform of input

U(z) =
z · (z − cos(ωT))

z2 − 2 · cos(ωT) · z + 1
(109)

Therefore

Y (z) = P (z) · U(z) = P (z) · z · (z − cos(ωT))

z2 − 2 · cos(ωT) · z + 1
(110)

Using a partial fraction expansion

Y (z) =

n∑

i=1

Ci

z − zi
+

A(ω) · z · (z − cos(ωT))− B(ω) · z · sin(ωT)
z2 − 2 · cos(ωT) · z + 1

(111)

If the system is asymptotically stable, all of the terms Z−1{ Ci

z−zi
}

will go to zero for k →∞.

81

To compute A(.) and B(.), evaluate expression at the poles z = e±jωT

limz→ejωT P (z) · U(z) =

limz→ejωT
A(ω)·ejωT ·(ejωT−cos(ωT))−B(ω)·ejωT ·sin(ωT)

z2−2·cos(ωT)·z+1

(112)

After elimination of the common denominator and using

sin(ωT) = −j · (ejωT − cos(ωT))) (113)

the following equation is obtained

P (ejωT)·ejωT ·(ejωT−cos(ωT)) = (A(ω)+jB(ω))·ejωT ·(ejωT−cos(ωT))
(114)

Therefore, the following relations are true

A(ω) = Re{P (ejωT)}, B(ω) = Im{P (ejωT)} (115)

and

m(ω) = |P (ejωT)|, ϕ(ω) = 6 {P (ejωT)} (116)

82

T=pi/10;

w=logspace(-1,1,1000);

nc=[1,1];

dc=[1,0.5,1];

Pc=polyval(nc,sqrt(-1)*w)./polyval(dc,sqrt(-1)*w);

magc=abs(Pc);

phic=180*unwrap(angle(Pc))/pi;

[nd,dd]=c2dm(nc,dc,T,’zoh’);

Pd=polyval(nd,exp(sqrt(-1)*w*T))./polyval(dd,exp(sqrt(-1)*w*T));

magd=abs(Pd);

phid=180*unwrap(angle(Pd))/pi;

subplot(211)

semilogx(w,20*log10(magc),w,20*log10(magd));

subplot(212)

semilogx(w,phic,w,phid)

subplot(111) 83

solid P (jω), dashed P (ejωT)
10

5

0

0

−5

−10

−15

−20

10−1

10−1

100

100

101

101

50

−50

−100

−150

−200

84

Numerical Solution

The solution of

x(k + 1) = F · x(k) +G · u(k), y(k) = C · x(k) +D · u(k) (117)

can be found by inspection

x(1) = F · x(0) +G · u(0)

x(2) = F · x(1) +G · u(1) = F 2 · x(0) + F ·G · u(0) +G · u(1)

x(3) = . . .

(118)

In general

x(k) = F k · x(0) +
k−1∑

l=0

F k−1−l ·G · u(l) (119)

y(k) = C ·
[
F k · x(0) +

k−1∑

l=0

F k−1−l ·G · u(l)
]
+D · u(k) (120)

85

The explicit solution can also be found using Z transformation

techniques. Since the Z transformation of the discrete-time impulse

d(k) =





1, for k = 0

0, else

(121)

is simply D(z) = 1 the Z transform of the impulse response of the

system (95) is given by

Γ(z) = c · (z · I − F)−1 · g + d (122)

The solution to arbitrary inputs u is then found using either inverse

Z transformation techniques or convolution operations

y(k) =
∞∑

l=0

γ(l) · u(k − l) (123)

where γ(k) is the inverse Z transform of Γ(z). As mentioned above,

this approach is interesting for theoretical considerations involving

simple input signals.

86

Transformation Rules for System Poles

A correspondence between the continuous-time original system

ẋ(t) = A · x(t), x(0) 6= 0 (124)

and its sampled and ZOH discretized counterpart

x(k + 1) = F · x(k), F = eA·T (125)

can be derived if A is transformed into a Jordan matrix

A = P · JA · P−1 by x = P · v. Combining this with the definition of

the matrix exponential one obtains

eA·T = I + 1
1!PJAP

−1T + 1
2!PJAP

−1PJAP
−1T 2

+ 1
3!PJAP

−1PJAP
−1PJAP

−1T 3 + · · ·
(126)

and therefore

eA·T = PP−1 + PJAP
−1T + 1

2!PJ2
AP

−1T 2 + 1
3!PJ3

AP
−1T 3 + · · ·

= PeJA·TP−1

(127)
87

Since the eigenvalues are invariant under similarity transformations

this proves that the eigenvalues λz
i of F and the eigenvalues λs

i of A

satisfy the important relation

λz
i = eλ

s
i ·T (128)

which is sometimes written as z = es·T to emphasize the fact that

this equation can be interpreted as a mapping between two complex

planes (more details of this argument will be given below). Notice

that the inverse mapping s = ln(z)/T is not unique. Only the region

C = {s ∈C | − π/T ≤ imag(s) ≤ π/T} (129)

is mapped one-to-one by z = es·T and its inverse function

s = ln(z)/T . This is of course simply a different formulation of the

Shannon theorem.

88

With this correspondence at hand, it is now possible to define a “nice

pole region” for discrete-time systems. The starting point is the

characteristic equation of a second-order continuous-time system

p(s) = s2 + 2 · δ · ω0 · s+ ω2
0 (130)

which is assumed to be representative of the dominant part of a

high-order plant. The solutions of the equation p(s) = 0 are the poles

of the system (124)

πs
1/2 = −ω0 · (δ ± j

√
1− δ2), δ < 1 (131)

and, using the mapping (128), the poles of the corresponding

discrete-time system are found to be

πz
1/2 = e−δ·ω0·T ·

(
cos(ω0 ·

√
1− δ2 · T)± j sin(ω0 ·

√
1− δ2 · T)

)

(132)

The next two figures show the level curves of this mapping.

89

Mapping for constant normalized frequencies ω0T

Im

Re

ω0T = 3π/4

ω0T = 1.1π

ω0T = π

ω0T = 1.4π ω0T = π/2

ω0T = π/5

δ = 1

δ = 0

ω0T = π/3

90

Mapping for constant damping ζ

Im

Re

ω0T =∞

δ = 0.2

δ = 0.5

δ = 0.8

δ = 1.0

ω0T = 0

91

“Nice pole region” for a second-order discrete-time system.

Im

Re

0.2

−0.2

ω0T = π/2

ω0T = π/10

δ =
√
0.5

1.0

92

The “nice pole region” for a discrete-time system has the form shown

in the figure. The arguments supporting that specific choice are:

• The damping has to be larger than δ = 1/
√
2 to avoid a large

overshoot.

• The frequency ω0 has to be sufficiently smaller than the Nyquist

frequency π/T . A limit of ω0 < 0.5 · π/T is reasonable.

• If the system P (z) has to be implemented using a digital

computer, the frequency ω0 may not be several orders of

magnitude faster than the Nyquist frequency (“fast sampling”)

otherwise even very small numerical errors are likely to have

unacceptable effects. The limit ω0 > 0.1 · π/T is reasonable.

These rules of thumb will be especially useful in root locus

controller-design techniques which will be introduced in the next

chapter.

93

Transformation Rules for System Zeros

The connections between the zeros ζzi of the discrete-time system

P (z) and the zeros ζsi of the original continuous-time system P (s) are

not as simple as it is the case for the poles of these systems. For

instance it is not true that ζzi = eζ
s
i T and even the number of finite

zeros of P (s) and P (z) do not coincide.

In general, a discrete-time system P (z) obtained using a

sample-and-hold operation of a strictly proper continuous-time

system P (s) will have n− 1 finite zeros (of course, if the plant P (s) is

proper but not strictly proper, the discretized plant P (z) will have n

finite zeros as well) where n is the order of P (s).

However, for sufficiently small sampling times T , m of these zeros

will be close to eζ
s
i T with m being the number of finite zeros ni of

the continuous-time plant P (s). The following example illustrates

this point.

94

Zeros of a First-Order System

The continuous-time system

P (s) =
s+ b

s+ a
(133)

may be transformed directly into its discrete-time counterpart

P (z) =
z −

[
1− b/a(1− e−aT)

]

z − a−aT
(134)

The discrete-time zero

ζz = 1− b/a(1− e−aT) (135)

is of course not equal to eζ
s T where ζs = −b. However,

ζz = 1− b/a(1− [1− aT +
1

2
a2T 2 − . . .]) (136)

shows that for small sampling times T the zero of P (z) is at

ζz ≈ 1− bT ≈ e−bT (137)

95

The remaining n−m− 1 zeros will converge for T → 0 to the zeros

of the following polynomials

n−m− 1 = 1 p1(z) = z + 1

n−m− 1 = 2 p2(z) = z2 + 4z + 1

n−m− 1 = 3 p3(z) = z3 + 11z2 + 11z + 1

n−m− 1 = 4 p4(z) = z4 + 26z3 + 66z2 + 26z + 1

.

(138)

Polynomials pi with i > 1 have roots outside the unit disc! Therefore,

MP P (s) will be transformed always into NMP P (z), provided r > 2

of P (s) and T → 0.

Interestingly, it is not always the case that NMP systems P (s) are

transformed into NMP systems P (z).

96

Nyquist Criterion

The Nyquist criterion is one of the most useful tools for the analysis

of continuous-time systems. Its main advantage is that it permits to

determine the stability of a closed-loop feedback system by analyzing

the corresponding open-loop transfer function. Obviously, such a tool

would be useful in a discrete-time setting as well.

The main idea behind the Nyquist criterion is to analyze the phase

change of a mapping of points lying on a curve which encloses all

unstable poles of that mapping (using the so called “principle of

arguments”). A possible choice of such a curve for the discrete-time

case is shown below. The important part is the “perforated unit

circle” (starting at point a, passing through point b, and ending at

point c). The closure of the curve, indicated with the dashed lines

and the dashed circle with radius r →∞, is usually not analyzed. In

fact, for strictly proper loop gains L(s), most of these points will be

mapped to the origin.

97

Definition of the discrete-time Nyquist contour (left-hand side) and

Nyquist curve of the following example. The unstable poles are

marked with an asterisk.

a

b c d

e

Im

Im

ReRe

r = 1

r =∞

L(z)

L(b)
L(e) L(a)

L(c)
L(d)

L(ejϕ)

−1
∗

∗

98

All other arguments in the derivation of the Nyquist criterion remain

the same as in the continuous-time case. Accordingly, the

discrete-time Nyquist criterion guarantees the stability of the

closed-loop system

T (z) =
L(z)

1 + L(z)
(139)

iff the curve L(ejϕ) encloses the critical point −1 for ϕ ∈ [ǫ, 2π − ǫ]

as many times as the number of unstable poles of L(z) (counting

counter-clockwise encirclements positively).

Notice that the Nyquist criterion is rather powerful because it

permits to estimate the stability margin of a certain control system.

In fact, a system which has a large minimum distance to the critical

point −1 will be “robust” because it can tolerate large model

uncertainties.

99

Stability of a Closed-Loop System

Assume that the open-loop transfer function of a control system is

given by

L(z) =
z − 0.5

z2 − 0.2z + 1.4
(140)

The system is unstable with two poles at 0.1± j · 1.179. Therefore its

Nyquist plot L(ejϕ) has to encircle the critical point twice.

As the last figure shows, this is indeed the case. Accordingly, the

closed-loop system is stable having its two poles at −0.4± j · 0.86 . . .

The control loop, however, is not robust. Small perturbations in the

loop gain will destabilize the system.

100

5 Lecture — Discrete Time Synthesis

Motivating example showing that there is something to be gained ...

Plant to be controlled

P (s) =
1

s+ 1
(141)

embedded in the usual sample-and-hold structure, sampling time

T = 1 s. The discrete-time representation of P (s) is

P (z) =
b

z − a
, b = 1− e−T , a = e−T (142)

For these plants three different controllers are compared:

1. A continuous-time PI controller

C1(s) = kp ·
(
1 +

1

Tis

)
(143)

with gain kp = 1 and integration time Ti = 0.5. This controller

will be used to control the continuous-time plant P (s).

101

2. The discrete-time emulation of this PI controller obtained by

applying the Tustin transformation (24)

C2(z) = 2 · z

z − 1
(144)

C2 and the subsequent controller C3 will be used to control the

discrete-time plant P (z).

3. A discrete-time controller

C3(z) = κ · z − β

z − α
(145)

whose parameters κ, β, α will be chosen below in order to

produce a desired pole position.

The cross-over frequency ωc of the loop gain L(s) = P (s)C(s) is at

1.4 . . . rad/s. A sampling time of T = 1 s obviously is a slow

sampling situation with a Nyquist frequency ωN = π ≈ 2 · ωc.

102

The poles of the closed-loop continuous-time system T (s) are at

s1,2 = −1± j. The poles to be realized by the controller C3(z) are

chosen to be zi = esi , i = {1, 2}, i.e., the controller C3(z) produces

the same closed-loop poles as the continuous-time closed-loop system

has after the usual sample-and-hold operation. The following values

of the controller parameters satisfy this requirement

κ =
1 + a− z1 − z2

b
, β =

a− z1 · z2
1 + a− z1 − z2

, α = 1 (146)

The next figure shows the step response of the system to a change of

the reference value r from 0 to r∗ at time t∗. As expected, the

continuous-time controller C1(s) performs best. The “correctly”

discretized controller C3(z) doesn’t cause substantial deterioration of

the closed-loop behavior. The emulation controller C2(z) performs

quite poorly. A direct discrete-time controller design can lead to an

acceptable closed-loop performance even in slow-sampling situations

where emulation-based controllers fail.

103

y(t)

r∗

0

t∗ t

C3(z)

C1(s)

C2(z)

104

Goal limk→∞ y(k) = r0, where r(k) = h(k) · r0. Asymptotically stable

loop gain L(z) first condition. Second condition derived using the

final-value theorem

lim
k→∞

x(k) = lim
z→1

(z − 1) ·X(z) (147)

Pro memoria

Z{r(k)} = z

z − 1
· r0 (148)

System output

y(k), with Z{y(k)} = T (z) · z

z − 1
· r0 (149)

Applying the final-value theorem yields

lim
k→∞

y(k) = lim
z→1

(z − 1) · T (z) · z

z − 1
· r0 = T (1) · 1 · r0 (150)

Therefore, T (1) = 1 required. Since

T (z) =
L(z)

1 + L(z)
(151)

L(1) =∞ is required (L(z) has at least one pole at z = 1).

105

Root-Locus Methods

Root-locus methods represent a powerful approach for designing

low-order feedback controllers. The starting point is a plant

P (z) =
bn−1z

n−1 + . . . b1z + b0
zn + an−1zn−1 + . . . a1z + a0

=
nP (z)

dP (z)
(152)

and a static controller C(z) = kp where the free parameter

kp ∈ [kp,min, kp,max] ⊂ IR. This free parameter has to be chosen such

as to produce a desired pole configuration for the closed-loop system

which is given by

T (kp, z) =
kp · P (z)

1 + kp · P (z)
=

kp · nP (z)

dP + kp · nP (z)
(153)

The “noce-pole region” is the target zone for the poles ofthe

close-loop system’s poles. Obviously, for kp = 0 the poles of the

closed-loop system correspond to the poles of the uncontrolled plant.

For kp →∞ the poles of T (z) approach the n− 1 finite zeros of the

open-loop plant. The remaining pole will be real and will converge to

−∞ for kp bn−1 > 0 and to +∞ for kp bn−1 < 0.
106

As shown above, when an n-dimensional strictly-proper

continuous-time plant P (s) is transformed into its equivalent

discrete-time system P (z), the latter in general will have n− 1 finite

zeros!

One degree of freedom is usually not sufficient to attain a specific

desired pole configuration. Iterations with more degrees of freedom

often lead to better results. For a full pole placement, however, a

controller with n degrees of freedom and more advanced controller

design approaches are necessary. These approaches which will be

presented below.

107

Example — Root Locus Design

The continuous-time plant to be controlled is assumed to be given by

P (s) =
0.5ω2

0s+ ω2
0

s(s2 + 2ζω0s+ ω2
0)

(154)

with ω0 = 2π/3 and ζ = 0.9. This plant is transformed into its

discrete-time equivalent using the usual ZOH transformation. The

sampling time is assumed to be T = 0.6 s, i.e., only five times smaller

than the plant’s time constant.

The discretized plant

P (z) =
0.2802 . . . z2 + 0.1101 . . . z − 0.0585 . . .

z3 − 1.5510 . . . z2 + 0.6552 . . . z − 0.1041 . . .
(155)

has two finite zeros at n1 = −0.6938 . . . and n2 = 0.3008 . . . and three

poles at p1 = 1 and p2,3 = 0.2755 . . .± j 0.168 . . .

108

The controller C(z) is a delay-free proportional controller

C(z) = kp (156)

The poles of the closed-loop system as a function of the gain kp are

shown in Figure 5.2. The critical gain k∗p, i.e., the gain at which the

system is on the limit between being asymptotically stable and

unstable, has a numerical value of 3.69 . . . The gain k+p = 0.6 is

chosen such that the system poles are all in the “nice pole region.”

109

Root locus (left), ◦ = open-loop poles, × = system zeros, + = poles

at chosen gain k+p = 0.6, ∗ = poles at critical gain k∗p = 3.69. Step

response (right) of the closed-loop system with gain kp = 0.6.

y(t)

5T 10T time

Im

Re

t

110

Loop-Shaping Design in the Frequency Domain

The main ideas of this design technique are the same as in the

continuous-time case. Typically, a controller structure is chosen at

the outset (for instance a PID or a lead/lag controller) and the

parameters of this system are “tuned” such that the open-loop

frequency response attains the desired properties.

According to the Nyquist criterion, the stability of a perturbed

closed-loop system is guaranteed as long as the number of

encirclements of the critical point remains unchanged from the

original design.

Accordingly, the loop-shaping method consists of choosing those

controller parameters which produce a large minimum return

difference and possibly satisfy other requirements like cross-over

frequency limits or gain and phase margins. The following example

shows such a design procedure for a simple problem setup.

111

Example — Controller Design Using Loop-Shaping

Techniques

The system to be controlled is assumed to be given by

P (s) =
s+ 1

s2 + s+ 1
(157)

The controller structure is chosen to be an ideal PID controller

C(s) = kp

[
1 +

1

Ti s
+ Td s

]
(158)

which is transformed into its discrete-time equivalent using the

backward Euler emulation (24)

C(z) = kp

[
1 +

T

Ti

z

z − 1
+

Td

T

z − 1

z

]
(159)

The three parameters {kp, Ti, Td} are chosen such that a “nice”

frequency response L(ej ω T) is obtained. Of course, only frequencies

ω < π/T have to be considered.

112

The next figure shows the frequency responses of the open-loop gain

and the step responses of the closed-loop system for the following

four choices of the controller parameters

• Case a: {kp, Ti, Td} = {1, ∞, 0}

• Case b: {kp, Ti, Td} = {0.3, 0.5, 0.1}

• Case c: {kp, Ti, Td} = {0.5, 0.4, 0.45}

• Case d: {kp, Ti, Td} = {0.8980, 0.5860, 0.2351}

As expected, for an integrator gain of zero (i.e., Ti =∞), the

closed-loop system has a non-unity gain. In the other cases, reducing

the minimum distance to the critical point reduces settling times, but

it reduces system robustness as well.

113

a

a

b

b

c

c

d

d

5T 10T

y(t)

Im

Re

t

−1

114

Plant Inversion and Dead-Beat Control

At a first glance plant inversion techniques are elegant and powerful

design methods. However, they should be used with caution in order

to avoid serious problems, as shown in this section. The starting

point of the considerations that follow is a SISO plant

P (z) =
bmzm + bm−1z

m−1 + . . . b1z + b0
zn + an−1zn−1 + . . . a1z + a0

=
n(z)

d(z)
(160)

The plant is assumed to be asymptotically stable and minimum

phase, i.e., all poles and finite zeros are assumed to be inside the unit

circle.1 Without this assumption, unstable pole-zero cancellations

occur which – even in the best case of a perfect cancellation – produce

unstable unobservable modes and therefore internal instabilities.

1) Remember: This is a restricting assumption. Even if the original

continuous-time plant was asymptotically stable and minimum phase,

the discrete-time system might have zeros outside the unit disk.

115

The controller C(z) is chosen in order to realize a desired closed-loop

system transfer function

T (z)
!
=

ν(z)

δ(z)
(161)

Based on this equation the desired controller transfer function can be

derived directly

C(z) =
d(z)

n(z)
· ν(z)

δ(z)− ν(z)
(162)

Obviously, the reference transfer function must have (at least) as

many pure delays as the original plant had (otherwise the controller

will not be causal). In addition, very often the reference system will

be chosen to have unity gain at steady state

ν(1) = δ(1) (163)

Many alternatives are possible for the polynomials ν(z) and δ(z).

Typically the poles of such reference models will be chosen to be in

the “nice pole region” as defined above.

116

An interesting option is to prescribe a “dead-beat” behavior, i.e., a

system which has a finite settling time to changes in reference inputs.

Finite settling times can only be achieved by non-recursive reference

systems, i.e.,

δ(z) = zq, ν(z) = βpz
p + βp−1z

p−1 + . . .+ β1z + β0 (164)

for which condition (163) yields the additional requirement

p∑

i=0

βi = 1 (165)

Sometimes such systems are referred to as FIR filters, where FIR

stands for finite impulse response as opposed to IIR filters which

have an infinite impulse response and work recursively.

The resulting controller will be causal if the inequality n−m ≤ q − p

is satisfied. The specific choice of the coefficients βi determines the

shape of the transients (step responses). Of course the control effort

(energy) is greatly affected by this choice. The sampling time needs

to be taken into consideration as well. For the same system P (s),

shorter sampling times must be compensated by higher controller

orders q and p.
117

The dead-beat controller cancels the poles of the system with its

zeros, and it places all of the poles of the closed-loop system at the

origin. Accordingly, the closed-loop system reaches its setpoint in q

steps, at most.

Warning: as the net figure shows, the settling time of the

discrete-time closed-loop system is indeed finite. However, the

continuous-time response may include poorly damped oscillations

which are due to the very high gain that dead-beat controllers usually

need to achieve the desired behavior. Thus, very small modeling

errors may cause a severe performance deterioration. It is therefore

recommended to use dead-beat designs only with great caution.

118

Dead-Beat Design

In this example a dead-beat controller is designed for the

continuous-time system

P (s) =
1

s2 + s+ 1
(166)

The plant is inserted in the usual ZOH configuration and is

discretized with a sampling time of T = 0.5 s. The resulting

discrete-time system has the form

P (z) =
0.1044 . . . z + 0.0883 . . .

z2 − 1.4138 . . . z + 0.6065 . . .
(167)

with n = 2 and m = 1. The reference model is chosen as follows

T (z) =
0.7z + 0.3

z2
(168)

such that the conditions β1 + β0 = 1 and n−m ≤ q − p are satisfied.

The reference step response of the resulting sampled-data closed-loop

system is shown in the next figure.

119

y(t)

y(kT)

5T 10T time t

120

Controller Synthesis for MIMO systems

Linear Quadratic Regulators

Infinite-horizon linear quadratic regulators are known to have

excellent robustness properties in the continuous-time case and to be

well applicable in a MIMO setting as well. This section analyzes their

discrete-time counterparts.

For discrete-time systems the LQR problem formulation is the same

as in the continuous-time case, i.e., the system

xk+1 = F · xk +G · uk, x0 6= 0 (169)

has to be brought to the origin by a suitable control signal u such

that the criterion

J(u) =
∞∑

k=0

xT
k ·Q · xk + uT

k ·R · uk, Q = QT ≥ 0, R = RT > 0

(170)

is minimized.
121

The solution to this problem is the control signal

uk = −K · xk (171)

where the gain matrix K ∈ IRm×n is defined by

K =
[
R+GT S G

]−1
GT S F (172)

and

FT S G
[
R +GTS G

]−1
GTS F + S − FTS F −Q = 0 (173)

As in the continuous-time case, the optimal controller is linear and

time-invariant. The discrete-time algebraic Riccati equation (DARE)

(173) is solved using spectral methods (command “‘dare” in Matlab).

The formulation as an optimization problem (170) guarantees that

the resulting controller will work well in a MIMO setting as well. Its

robustness properties are analyzed below for the special case of an SI

example (however, the conclusions drawn will be valid in an MI

setting as well). In this case the choices Q1 = cT c or Q =“full” are

possible and R = r ∈ IR+ is a positive scalar.
122

Fourth-Order SISO System and LQR Controller

The plant to be controlled in this example is described by equation

ẋ(t) =




0 1 0 0

0 0 1 0

0 0 0 1

−1 −2 −2 −1



x(t)+




0

0

0

1



u(t), y(t) =

[
1 0 0 0

]
x(t)

(174)

After discretization (with a ZOH element, sampling time T = 1 s)

several LQR designs are compared using 2 different Q matrices

Q1 = cT c, and Q2 =




5 3 1 0

3 6 4 0

1 4 8 1

0 0 1 4




(175)

and a varying r ∈ [10−6, 104].

123

Resulting |1 + L(ejωT)| for varying weights r

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
10−6 10−4 10−2 100 102 104

Q = cT · c

Weight r

Q=“full”

m
in
(|1

+
L
(j
ω
)|)

124

This example shows that the discrete-time LQR controllers do not

have the same excellent robustness properties as the continuous-time

LQR designs. Especially the minimum return difference |1 + L(jω)|,
even in the best case, is smaller than 1 and may be almost zero.

As in the continuous-time case, “expensive-control” feedback (171)

minimizes control action and only shifts the unstable poles within the

unit circle (reflection at the unit circle in radial direction). The

transient behavior is not well damped, but the robustness (expressed

by the minimum return difference) is quite good.

125

Case 1: “expensive control” case (r = 106).

I
m

I
m

I
m

Re

Re

Re

1

1

1

1

-1

-1

-1

-1
-1

0.5

0.5

0.5

0.5

-0.5

-0.5

-0.5

-0.5

-0.5

0

0

0

0

0

0

0

1.5

-1.52

-0.05

-0.1

-0.15

-0.2
-0.8 -0.6 -0.4 -0.2 5 10 15

Nyquist open loop L(ejωT) Poles of F (∗) and F − g · k(×)

Detail of L(ejωT) Closed-loop, x(0) = [1, 0, 0, 0]T

time t (s)

O
u
tp

u
t
y
(t
)

126

Case 2: Example “cheap control” (r = 10−6), weight matrix Q1.

I
m

I
m

I
m

Re

Re

Re

1

1

1

-1

-1

-1

0.5

0.5

0.5

-0.5

-0.5

-0.5

0

0

0

0

0

0

0

1.5

-0.02

-0.04

-0.06

-0.08

-0.1
5

5-5

10 15

Nyquist open loop L(ejωT) Poles of F (∗) and F − g · k(×)

Detail of L(ejωT) Closed-loop, x(0) = [1, 0, 0, 0]T

time t(s)

O
u
tp

u
t
y
(t
)

6

4

2

-2

-1.3 -1.2 -1.1 -0.9

127

Case 3: “Cheap control” (r = 10−6), weight matrix Q2.

I
m

I
m

I
m

Re

Re

Re

3

2

1

0

-1

-2
-6 -4 -2 0

-0.6

0

-0.1

-0.2

-0.3

-0.4

-0.5
-1 -0.9 -0.8 -0.7

1

0.5

0

-0.5

-1

-1 -0.5 0 0.5 1

1.5

1

0.5

0

-0.5
0 5 10 15

Nyquist open loop L(ejωT) Poles of F (∗)and F − g · k(×)

Detail of L(ejωT) Closed-loop, x(0) = [1, 0, 0, 0]T

time t (s)

O
u
tp

u
t
y
(t
)

128

The first “cheap-control” case (Q = Q1 = cT · c) has 2 finite zeros in

the unit circle (the minimum phase transmission zeros of the system

{F, g, c, 0}, indicated by circles in the right top plot). The

cheap-control solution moves 2 of the closed-loop poles to these 2

finite zeros (“plant inversion”) and the remaining 2 poles to the

origin. This corresponds to a dead-beat control approach. As

expected , in this case the robustness properties are extremely poor

(min{|1 + L(ejωT)| ≈ 0.02).

The second “cheap-control” case (Q = Q2 = “full”) introduces no

finite zeros and the pole configuration is determined by the

optimization criterion only. The resulting loop has a substantially

improved robustness.

A careful choice of the weights Q and R in combination with the

sampling time T is therefore necessary. Extreme solutions (for

instance “cheap-control”) are not guaranteed to produce the best

possible behavior.

129

In general, LQR controlled systems will have non-zero output for

constant disturbances. Therefore, adding p integrators at the system

output (adding the integrators at the system input is possible as well

and – at least for “square systems” – yields the same closed-loop

behavior) is often necessary (see next figure). With these additional

integrators the following augmented system description results

x̃k+1 = F̃ · x̃k + G̃ · uk, x̃k =


 vk

xk


 (176)

where the new system matrices are defined by

F̃ =


 I −C

0 F


 , G̃ =


 0

G


 , (177)

130

Introducing a fictitious output equation

ỹk =
[
γ · I C

]
· x̃k (178)

the integrator action can be weighted using the scalar parameter γ.

Using this formulation a solution K̃ of the LQR problem for the

augmented system {F̃ , G̃, C̃T · C̃, R̃} can be found using equations

(171) and (173). The resulting feedback matrix K̃ is then partitioned

as follows

K̃ = [−KI K] (179)

and the two matrices KI ∈ IRm×p and K ∈ IRm×n may be used as

feedback gains as indicated in the next figure

131

LQR system with p additional integrators at the output.

rk

I part

vk+1
z−1 z−1

vk
KI

dk

G

K

xk+1

F

xk

C
yk+

+

+ +

+
+

+

− −

132

State Reconstruction and Observer-Based Controllers

In general the state x of a system

xk+1 = F · xk +G · uk, yk = C · xk (180)

is not accessible and “observers” will have to be used to estimate this

information. As in the continuous-time setting, these filters are built

using a copy of the system’s dynamics and the errors caused by the

mismatched initial conditions x0 6= x̂0 are reduced by introducing

output error feedback

x̂k+1 = F̂ · x̂k + Ĝ · uk + L · (yk − ŷk), ŷk = Ĉ · x̂k (181)

Neglecting all noise signals (ninp = nmes = 0) and assuming no

plant/model mismatch (F̂ = F , Ĝ = G, and Ĉ = C), the dynamics of

the error signal ek = xk − x̂k are given by

ek+1 = [F − L · C] · ek, e0 = x0 − x̂0 (182)

133

Plant and observer block diagram, ninp and nmes are additive input

and output noise signals.

uk

ninp

G
xk+1

x0

z−1

z−1

F

xk
C

yk

nmes

L

Ĝ
x̂k+1

x̂k

x̂k
Ĉ

ŷk

x̂0

F̂

+

+

+

+

+

+

+
+

+
+

−

134

The observer gain L must be chosen such that the matrix F − L · C
has desired properties (stable, sufficiently fast, no unnecessary noise

sensitivity, etc.).

If the measurement and input noises are Gaussian with known

covariances, optimal estimators (“Kalman filters”) may be designed.

If this is not the case, any of the two methods introduced so

far(eigenvalue placement and LQR) may be used with some rules of

thumb as guidelines. One typical guideline is to choose the poles of

the observer three times ”faster” than those of the plant to be

observed.

Of course, the ability to estimate (with asymptotically zero error) the

state of the system (180) is quite an achievement. However, the full

power of the observer concept (181) becomes clear only when such an

observer is used in an output feedback control loop where the

feedback gains K are taken from a fictitious state feedback design.

135

In this case, the combined system is described by the 2n-dimensional

difference equation



xk+1

x̂k+1


 =




F −G ·K

L · C F −G ·K − L · C


 ·




xk

x̂k


+




0

−L


 · rk

(183)

and by

yk =
[
C 0

]
·




xk

x̂k


 (184)

where the signal rk ∈ IRp is the reference value for the output yk.

136

Using the coordinate transformation



xk+1

x̂k+1


 = T ·




zk+1

ẑk+1


 , with T = T−1 =




I 0

I −I


 (185)

shows that the system matrix of (183) is similar to



F −G ·K −G ·K

0 F − L · C


 (186)

and that therefore the poles of the system (183) are the poles of the

original state-feedback design (F −G ·K) and the observer design

(F − L · C). This is known as the “separation principle.” If stability

only is to be analyzed, it permits the solution of the two problems of

state feedback and observer design separately, without taking into

consideration one problem when solving the other. It will be shown

below that this is not true anymore when stability is not the only

design criterion.

137

Notice that the error dynamics ek are not independent of the

reference signal rk in the formulation (183). Of course, this is not

desirable since the error should remain zero, once the influence of the

mismatched initial conditions has been eliminated. To improve on

this, the following feedforward additions may be introduced (“2-DOF

controller”).



xk+1

x̂k+1


 =




F −G ·K

L · C F −G ·K − L · C


·




xk

x̂k


+




G · Γ

Λ− L


·rk

(187)

where the two matrices Γ ∈ IRm×p and Λ ∈ IRn×p have to be chosen

such that

1. The error dynamics do not depend on the reference signal rk.

2. The static gain between reference and output is equal to Ip×p.

138

Notice that this formulation is not trivial, i.e., the reference value has

to be fed to the plant using the input matrix G while the input to the

observer may be chosen completely arbitrarily (hence the matrix Λ).

Notice also that only “square systems”, i.e., in general only systems

with the same number of inputs and outputs (m = p) can satisfy

these two conditions.

139

Using these two conditions the following expression can be derived

Λ = G · Γ + L, Γ−1 = C [I − (F −G ·K)]
−1 ·G (188)

This choice guarantees a static gain of Ip×p. With dynamic filters

more sophisticated feedforward compensation schemes are possible,

which improve the system behavior also for non-zero frequencies.

Notice that observer-based controllers are simply n-th order

output-feedback controllers. A slight rearrangement of the

closed-loop system diagram (as shown in the next figure) reveals that

the open-loop gain L(z) is given by

L(z) = C · [zI − F]−1 ·G ·K · [zI − (F −G ·K − L · C]−1 · L (189)

This expression will be used below (in its SISO version) to analyze

the robustness properties of control system designs.

140

Observer-based control system interpreted as an output-feedback

controller, loop-breaking point indicated as a symbolic switch in the

unity-feedback path.

rk

Λ

−L

F − LC −GK

x̂k+1
z−1 z−1

C(z)

x̂k
−K

Γ

uk

G
xk+1

F

xk

C
yk+

+

+
+

+

++ +−

141

LQG/LTR Methods

In the continuous-time setting the LQG-LTR method (Linear

Quadratic Gaussian – Loop Transfer Recovery) is a well-known

design approach which permits (at least for minimum-phase systems)

the recovery of the excellent robustness properties of LQR designs for

observer-based output feedback controllers.

The key idea is to use the optimal control formalism of LQR designs

for the state feedback and the observer feedback design.

142

The LQG-LTR procedure comprises – in a nutshell – the following

four steps:

1. Design a suitable feedback gain K (171) assuming that state

feedback is feasible. Check the time domain (transients) and

frequency domain (robustness) properties of this design and

iterate on the weights Q and R if the design is not satisfactory.

Add integrators (if necessary) according to the approach shown

above.

2. Use the state-feedback solution in an observer-based

output-feedback structure. Add a feedforward part (if necessary)

as shown above.

143

3. The observer gain L is found by solving an LQR problem for the

“dual system”, i.e., for the fictitious system described by

{FT , CT , GTG, q · I}.

4. Iterate on the observer gain by reducing the scalar q until

sufficient robustness is reached without sacrificing too much of

the noise reduction properties.

The following example shows what additional limitations are imposed

by the fact that the controller is realized as a discrete-time system.

144

Fourth-Order SISO System and LQG-LTR Controller

This example is a continuation of the LQR example in which a

satisfactory state-feedback gain k was found for the system

{F, g, c, 0} described by (174). For that system an observer is

designed according to the LTR procedure described in this section (a

feedforward part is added). The weight Q is chosen as Q = g · gT and

the scalar q is varied. Three typical results are shown.

For q →∞ the transient behavior, i.e., the observation error

dynamics ||ek|| = ||xk − x̂k|| and the reference error dynamics

||rk − yk|| are acceptable. However, the open-loop gain curve

L(ejωT), as introduced in equation (189), passes quite closely to the

critical point, i.e., the system is rather “fragile” and small modeling

errors are likely to cause severe performance degradations.

145

Letting q → 0 improves the open-loop gain L(ejωT) but produces an

unacceptable transient behavior. Notice that even in this limiting

case the LQG open-loop gain does not reach the LQR open-loop gain!

After some iterations an LTR gain q = 0.05 is chosen as a good

compromise between robustness and transient behavior. The

resulting open-loop gains, eigenvalues, and step responses are shown

in the third figure.

146

LQG-LTRdesignwithq→∞

I
m I
m

Re Retimet

L(e
jωT

)

--=LQR

-=LQG

2

1

0

-1

-2

-4-20

∗=F

o=F−g·k

+=F−h·c

1

0.5

0

-0.5

-1

-101

−=y

−−=u

...=||e||

3

2

1

0

-1

0102030

147

LQG-LTR design with q → 0

I
mI
m

ReRe time t

L(ejωT)

- - =LQR
- =LQG

2

1

0

-1

-2

-4 -2 0

∗ = F
o = F − g · k
+ = F − h · c

1

0.5

0

-0.5

-1

-1 0 1

− = y
−− = u
...=||e||

3

2

1

0

-1

0 10 20 30

148

LQG-LTR design with q = 0.05

I
mI
m

ReRe time t

L(ejωT)

- - =LQR
- =LQG

2

1

0

-1

-2

-4 -2 0

∗ = F
o = F − g · k
+ = F − h · c

1

0.5

0

-0.5

-1

-1 0 1

− = y
−− = u
...=||e||

3

2

1

0

-1

0 10 20 30

149

